p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.248C23, C4⋊C4.70D4, C8⋊1C8⋊22C2, C8⋊6D4⋊26C2, (C2×D4).63D4, C4⋊D8.8C2, (C2×C8).186D4, D4⋊2Q8⋊34C2, C4.4D8⋊20C2, C4.D8⋊18C2, C4.6Q16⋊9C2, C4⋊Q8.69C22, C4.103(C4○D8), C2.12(C8⋊D4), C4⋊C8.189C22, C4.93(C8⋊C22), (C4×C8).214C22, (C4×D4).49C22, C4⋊1D4.36C22, C4.74(C8.C22), C2.16(D4.4D4), C2.12(D4.2D4), C22.209(C4⋊D4), (C2×C4).33(C4○D4), (C2×C4).1283(C2×D4), SmallGroup(128,429)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C42.248C23
G = < a,b,c,d,e | a4=b4=c2=e2=1, d2=ab2, ab=ba, cac=a-1, ad=da, ae=ea, cbc=ebe=b-1, bd=db, dcd-1=a-1c, ece=bc, ede=a2d >
Subgroups: 232 in 85 conjugacy classes, 32 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, M4(2), D8, C22×C4, C2×D4, C2×D4, C2×Q8, C4×C8, C22⋊C8, D4⋊C4, C4⋊C8, C4.Q8, C4×D4, C4⋊1D4, C4⋊Q8, C2×M4(2), C2×D8, C4.D8, C4.6Q16, C8⋊1C8, C8⋊6D4, C4⋊D8, D4⋊2Q8, C4.4D8, C42.248C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C4⋊D4, C4○D8, C8⋊C22, C8.C22, D4.2D4, C8⋊D4, D4.4D4, C42.248C23
Character table of C42.248C23
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 8A | 8B | 8C | 8D | 8E | 8F | 8G | 8H | 8I | 8J | |
size | 1 | 1 | 1 | 1 | 8 | 16 | 2 | 2 | 2 | 2 | 4 | 8 | 16 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | -1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | linear of order 2 |
ρ9 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 0 | 0 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | 2 | -2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | 2 | 2 | -2 | 0 | -2 | 2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | complex lifted from C4○D4 |
ρ14 | 2 | 2 | 2 | 2 | 0 | 0 | -2 | -2 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | complex lifted from C4○D4 |
ρ15 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | √-2 | √2 | -√-2 | -√2 | 0 | 0 | complex lifted from C4○D8 |
ρ16 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | -√-2 | √2 | √-2 | -√2 | 0 | 0 | complex lifted from C4○D8 |
ρ17 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 2i | -2i | 0 | -√-2 | -√2 | √-2 | √2 | 0 | 0 | complex lifted from C4○D8 |
ρ18 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | -2i | 2i | 0 | √-2 | -√2 | -√-2 | √2 | 0 | 0 | complex lifted from C4○D8 |
ρ19 | 4 | -4 | -4 | 4 | 0 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ20 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 4 | 0 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C8⋊C22 |
ρ21 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√2 | 0 | 0 | -2√2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ22 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√2 | 0 | 0 | 2√2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4.4D4 |
ρ23 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | -4 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from C8.C22, Schur index 2 |
(1 54 5 50)(2 55 6 51)(3 56 7 52)(4 49 8 53)(9 61 13 57)(10 62 14 58)(11 63 15 59)(12 64 16 60)(17 27 21 31)(18 28 22 32)(19 29 23 25)(20 30 24 26)(33 46 37 42)(34 47 38 43)(35 48 39 44)(36 41 40 45)
(1 61 52 11)(2 62 53 12)(3 63 54 13)(4 64 55 14)(5 57 56 15)(6 58 49 16)(7 59 50 9)(8 60 51 10)(17 36 25 47)(18 37 26 48)(19 38 27 41)(20 39 28 42)(21 40 29 43)(22 33 30 44)(23 34 31 45)(24 35 32 46)
(2 55)(3 7)(4 53)(6 51)(8 49)(9 63)(10 16)(11 61)(12 14)(13 59)(15 57)(17 36)(18 42)(19 34)(20 48)(21 40)(22 46)(23 38)(24 44)(25 47)(26 39)(27 45)(28 37)(29 43)(30 35)(31 41)(32 33)(50 54)(58 60)(62 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 29)(2 26)(3 31)(4 28)(5 25)(6 30)(7 27)(8 32)(9 41)(10 46)(11 43)(12 48)(13 45)(14 42)(15 47)(16 44)(17 56)(18 53)(19 50)(20 55)(21 52)(22 49)(23 54)(24 51)(33 58)(34 63)(35 60)(36 57)(37 62)(38 59)(39 64)(40 61)
G:=sub<Sym(64)| (1,54,5,50)(2,55,6,51)(3,56,7,52)(4,49,8,53)(9,61,13,57)(10,62,14,58)(11,63,15,59)(12,64,16,60)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26)(33,46,37,42)(34,47,38,43)(35,48,39,44)(36,41,40,45), (1,61,52,11)(2,62,53,12)(3,63,54,13)(4,64,55,14)(5,57,56,15)(6,58,49,16)(7,59,50,9)(8,60,51,10)(17,36,25,47)(18,37,26,48)(19,38,27,41)(20,39,28,42)(21,40,29,43)(22,33,30,44)(23,34,31,45)(24,35,32,46), (2,55)(3,7)(4,53)(6,51)(8,49)(9,63)(10,16)(11,61)(12,14)(13,59)(15,57)(17,36)(18,42)(19,34)(20,48)(21,40)(22,46)(23,38)(24,44)(25,47)(26,39)(27,45)(28,37)(29,43)(30,35)(31,41)(32,33)(50,54)(58,60)(62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,29)(2,26)(3,31)(4,28)(5,25)(6,30)(7,27)(8,32)(9,41)(10,46)(11,43)(12,48)(13,45)(14,42)(15,47)(16,44)(17,56)(18,53)(19,50)(20,55)(21,52)(22,49)(23,54)(24,51)(33,58)(34,63)(35,60)(36,57)(37,62)(38,59)(39,64)(40,61)>;
G:=Group( (1,54,5,50)(2,55,6,51)(3,56,7,52)(4,49,8,53)(9,61,13,57)(10,62,14,58)(11,63,15,59)(12,64,16,60)(17,27,21,31)(18,28,22,32)(19,29,23,25)(20,30,24,26)(33,46,37,42)(34,47,38,43)(35,48,39,44)(36,41,40,45), (1,61,52,11)(2,62,53,12)(3,63,54,13)(4,64,55,14)(5,57,56,15)(6,58,49,16)(7,59,50,9)(8,60,51,10)(17,36,25,47)(18,37,26,48)(19,38,27,41)(20,39,28,42)(21,40,29,43)(22,33,30,44)(23,34,31,45)(24,35,32,46), (2,55)(3,7)(4,53)(6,51)(8,49)(9,63)(10,16)(11,61)(12,14)(13,59)(15,57)(17,36)(18,42)(19,34)(20,48)(21,40)(22,46)(23,38)(24,44)(25,47)(26,39)(27,45)(28,37)(29,43)(30,35)(31,41)(32,33)(50,54)(58,60)(62,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,29)(2,26)(3,31)(4,28)(5,25)(6,30)(7,27)(8,32)(9,41)(10,46)(11,43)(12,48)(13,45)(14,42)(15,47)(16,44)(17,56)(18,53)(19,50)(20,55)(21,52)(22,49)(23,54)(24,51)(33,58)(34,63)(35,60)(36,57)(37,62)(38,59)(39,64)(40,61) );
G=PermutationGroup([[(1,54,5,50),(2,55,6,51),(3,56,7,52),(4,49,8,53),(9,61,13,57),(10,62,14,58),(11,63,15,59),(12,64,16,60),(17,27,21,31),(18,28,22,32),(19,29,23,25),(20,30,24,26),(33,46,37,42),(34,47,38,43),(35,48,39,44),(36,41,40,45)], [(1,61,52,11),(2,62,53,12),(3,63,54,13),(4,64,55,14),(5,57,56,15),(6,58,49,16),(7,59,50,9),(8,60,51,10),(17,36,25,47),(18,37,26,48),(19,38,27,41),(20,39,28,42),(21,40,29,43),(22,33,30,44),(23,34,31,45),(24,35,32,46)], [(2,55),(3,7),(4,53),(6,51),(8,49),(9,63),(10,16),(11,61),(12,14),(13,59),(15,57),(17,36),(18,42),(19,34),(20,48),(21,40),(22,46),(23,38),(24,44),(25,47),(26,39),(27,45),(28,37),(29,43),(30,35),(31,41),(32,33),(50,54),(58,60),(62,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,29),(2,26),(3,31),(4,28),(5,25),(6,30),(7,27),(8,32),(9,41),(10,46),(11,43),(12,48),(13,45),(14,42),(15,47),(16,44),(17,56),(18,53),(19,50),(20,55),(21,52),(22,49),(23,54),(24,51),(33,58),(34,63),(35,60),(36,57),(37,62),(38,59),(39,64),(40,61)]])
Matrix representation of C42.248C23 ►in GL6(𝔽17)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 14 | 3 | 0 | 16 |
0 | 0 | 3 | 3 | 1 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 14 | 0 | 0 |
0 | 0 | 3 | 14 | 0 | 0 |
0 | 0 | 9 | 9 | 3 | 3 |
0 | 0 | 9 | 8 | 14 | 3 |
14 | 14 | 0 | 0 | 0 | 0 |
14 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 14 | 14 | 15 | 0 |
0 | 0 | 14 | 3 | 0 | 15 |
0 | 0 | 0 | 0 | 3 | 3 |
0 | 0 | 0 | 0 | 3 | 14 |
G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,14,3,0,0,16,0,3,3,0,0,0,0,0,1,0,0,0,0,16,0],[0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,16,0],[1,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,14,3,9,9,0,0,14,14,9,8,0,0,0,0,3,14,0,0,0,0,3,3],[14,14,0,0,0,0,14,3,0,0,0,0,0,0,14,14,0,0,0,0,14,3,0,0,0,0,15,0,3,3,0,0,0,15,3,14] >;
C42.248C23 in GAP, Magma, Sage, TeX
C_4^2._{248}C_2^3
% in TeX
G:=Group("C4^2.248C2^3");
// GroupNames label
G:=SmallGroup(128,429);
// by ID
G=gap.SmallGroup(128,429);
# by ID
G:=PCGroup([7,-2,2,2,-2,2,-2,2,141,512,422,387,1123,136,2804,718,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=c^2=e^2=1,d^2=a*b^2,a*b=b*a,c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,d*c*d^-1=a^-1*c,e*c*e=b*c,e*d*e=a^2*d>;
// generators/relations
Export